On the factorization of reducible properties of graphs into irreducible factors

نویسندگان

  • Peter Mihók
  • Roman Vasky
چکیده

A hereditary property R of graphs is said to be reducible if there exist hereditary properties P1,P2 such that G ∈ R if and only if the set of vertices of G can be partitioned into V (G) = V1 ∪ V2 so that 〈V1〉 ∈ P1 and 〈V2〉 ∈ P2. The problem of the factorization of reducible properties into irreducible factors is investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique factorization theorem

A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let P1,P2, . . . ,Pn be properties of graphs. A graph G is (P1,P2, . . . ,Pn)-partitionable (G has property P1◦P2◦ · · · ◦Pn) if the vertex set V (G) of G can be partitioned into ...

متن کامل

Factorizations of properties of graphs

A property of graphs is any isomorphism closed class of simple graphs. For given properties of graphs P1,P2, . . . ,Pn a vertex (P1,P2, . . . ,Pn)-partition of a graph G is a partition {V1, V2, . . . , Vn} of V (G) such that for each i = 1, 2, . . . , n the induced subgraph G[Vi] has property Pi. The class of all graphs having a vertex (P1,P2, . . . ,Pn)partition is denoted by P1◦P2◦ · · · ◦Pn....

متن کامل

Reducible properties of graphs

Let IL be the set of all hereditary and additive properties of graphs. For P1,P2 ∈ IL, the reducible property R = P1 ◦ P2 is defined as follows: G ∈ R if and only if there is a partition V (G) = V1 ∪ V2 of the vertex set of G such that 〈V1〉G ∈ P1 and 〈V2〉G ∈ P2. The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the dec...

متن کامل

Decomposition of ideals into pseudo-irreducible ideals in amalgamated algebra along an ideal

Let $f : A rightarrow B$ be a ring homomorphism and $J$ an ideal of $B$. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $Abowtie^fJ$ to be $J$-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $Abowtie^fJ$, in special cases.

متن کامل

Minimal reducible bounds for induced-hereditary properties

Let (M ;⊆) and (L ;⊆) be the lattices of additive induced-hereditary properties of graphs and additive hereditary properties of graphs, respectively. A property R∈Ma (∈ L) is called a minimal reducible bound for a property P∈Ma (∈ L) if in the interval (P;R) of the lattice M (L) there are only irreducible properties. The set of all minimal reducible bounds of a property P∈Ma in the lattice M we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 15  شماره 

صفحات  -

تاریخ انتشار 1995